Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Elife ; 122023 04 06.
Article in English | MEDLINE | ID: covidwho-2274176

ABSTRACT

Australia introduced COVID-19 infection prevention and control measures in early 2020. To help prepare health services, the Australian Government Department of Health commissioned a modelled evaluation of the impact of disruptions to population breast, bowel, and cervical cancer screening programmes on cancer outcomes and cancer services. We used the Policy1 modelling platforms to predict outcomes for potential disruptions to cancer screening participation, covering periods of 3, 6, 9, and 12 mo. We estimated missed screens, clinical outcomes (cancer incidence, tumour staging), and various diagnostic service impacts. We found that a 12-mo screening disruption would reduce breast cancer diagnoses (9.3% population-level reduction over 2020-2021) and colorectal cancer (up to 12.1% reduction over 2020-21), and increase cervical cancer diagnoses (up to 3.6% over 2020-2022), with upstaging expected for these cancer types (2, 1.4, and 6.8% for breast, cervical, and colorectal cancers, respectively). Findings for 6-12-mo disruption scenarios illustrate that maintaining screening participation is critical to preventing an increase in the burden of cancer at a population level. We provide programme-specific insights into which outcomes are expected to change, when changes are likely to become apparent, and likely downstream impacts. This evaluation provided evidence to guide decision-making for screening programmes and emphasises the ongoing benefits of maintaining screening in the face of potential future disruptions.


Subject(s)
Breast Neoplasms , COVID-19 , Colorectal Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/prevention & control , Early Detection of Cancer , Australia/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Breast Neoplasms/prevention & control , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/prevention & control
2.
BMC Cancer ; 23(1): 60, 2023 Jan 18.
Article in English | MEDLINE | ID: covidwho-2237258

ABSTRACT

BACKGROUND: Colorectal cancer is the third most diagnosed cancer globally and the second leading cause of cancer death. We examined colon and rectal cancer treatment patterns in Australia. METHODS: From cancer registry records, we identified 1,236 and 542 people with incident colon and rectal cancer, respectively, diagnosed during 2006-2013 in the 45 and Up Study cohort (267,357 participants). Cancer treatment and deaths were determined via linkage to routinely collected data, including hospital and medical services records. For colon cancer, we examined treatment categories of "surgery only", "surgery plus chemotherapy", "other treatment" (i.e. other combinations of surgery/chemotherapy/radiotherapy), "no record of cancer-related treatment, died"; and, for rectal cancer, "surgery only", "surgery plus chemotherapy and/or radiotherapy", "other treatment", and "no record of cancer-related treatment, died". We analysed survival, time to first treatment, and characteristics associated with treatment receipt using competing risks regression. RESULTS: 86.4% and 86.5% of people with colon and rectal cancer, respectively, had a record of receiving any treatment ≤2 years post-diagnosis. Of those treated, 93.2% and 90.8% started treatment ≤2 months post-diagnosis, respectively. Characteristics significantly associated with treatment receipt were similar for colon and rectal cancer, with strongest associations for spread of disease and age at diagnosis (p<0.003). For colon cancer, the rate of "no record of cancer-related treatment, died" was higher for people with distant spread of disease (versus localised, subdistribution hazard ratio (SHR)=13.6, 95% confidence interval (CI):5.5-33.9), age ≥75 years (versus age 45-74, SHR=3.6, 95%CI:1.8-7.1), and visiting an emergency department ≤1 month pre-diagnosis (SHR=2.9, 95%CI:1.6-5.2). For rectal cancer, the rate of "surgery plus chemotherapy and/or radiotherapy" was higher for people with regional spread of disease (versus localised, SHR=5.2, 95%CI:3.6-7.7) and lower for people with poorer physical functioning (SHR=0.5, 95%CI:0.3-0.8) or no private health insurance (SHR=0.7, 95%CI:0.5-0.9). CONCLUSION: Before the COVID-19 pandemic, most people with colon or rectal cancer received treatment ≤2 months post-diagnosis, however, treatment patterns varied by spread of disease and age. This work can be used to inform future healthcare requirements, to estimate the impact of cancer control interventions to improve prevention and early diagnosis, and serve as a benchmark to assess treatment delays/disruptions during the pandemic. Future work should examine associations with clinical factors (e.g. performance status at diagnosis) and interdependencies between characteristics such as age, comorbidities, and emergency department visits.


Subject(s)
COVID-19 , Colonic Neoplasms , Rectal Neoplasms , Humans , Aged , Middle Aged , Australia/epidemiology , Pandemics , Rectal Neoplasms/epidemiology , Rectal Neoplasms/therapy , Life Style
3.
Lancet Gastroenterol Hepatol ; 6(4): 304-314, 2021 04.
Article in English | MEDLINE | ID: covidwho-2184854

ABSTRACT

BACKGROUND: Colorectal cancer screening programmes worldwide have been disrupted during the COVID-19 pandemic. We aimed to estimate the impact of hypothetical disruptions to organised faecal immunochemical test-based colorectal cancer screening programmes on short-term and long-term colorectal cancer incidence and mortality in three countries using microsimulation modelling. METHODS: In this modelling study, we used four country-specific colorectal cancer microsimulation models-Policy1-Bowel (Australia), OncoSim (Canada), and ASCCA and MISCAN-Colon (the Netherlands)-to estimate the potential impact of COVID-19-related disruptions to screening on colorectal cancer incidence and mortality in Australia, Canada, and the Netherlands annually for the period 2020-24 and cumulatively for the period 2020-50. Modelled scenarios varied by duration of disruption (3, 6, and 12 months), decreases in screening participation after the period of disruption (0%, 25%, or 50% reduction), and catch-up screening strategies (within 6 months after the disruption period or all screening delayed by 6 months). FINDINGS: Without catch-up screening, our analysis predicted that colorectal cancer deaths among individuals aged 50 years and older, a 3-month disruption would result in 414-902 additional new colorectal cancer diagnoses (relative increase 0·1-0·2%) and 324-440 additional deaths (relative increase 0·2-0·3%) in the Netherlands, 1672 additional diagnoses (relative increase 0·3%) and 979 additional deaths (relative increase 0·5%) in Australia, and 1671 additional diagnoses (relative increase 0·2%) and 799 additional deaths (relative increase 0·3%) in Canada between 2020 and 2050, compared with undisrupted screening. A 6-month disruption would result in 803-1803 additional diagnoses (relative increase 0·2-0·4%) and 678-881 additional deaths (relative increase 0·4-0·6%) in the Netherlands, 3552 additional diagnoses (relative increase 0·6%) and 1961 additional deaths (relative increase 1·0%) in Australia, and 2844 additional diagnoses (relative increase 0·3%) and 1319 additional deaths (relative increase 0·4%) in Canada between 2020 and 2050, compared with undisrupted screening. A 12-month disruption would result in 1619-3615 additional diagnoses (relative increase 0·4-0·9%) and 1360-1762 additional deaths (relative increase 0·8-1·2%) in the Netherlands, 7140 additional diagnoses (relative increase 1·2%) and 3968 additional deaths (relative increase 2·0%) in Australia, and 5212 additional diagnoses (relative increase 0·6%) and 2366 additional deaths (relative increase 0·8%) in Canada between 2020 and 2050, compared with undisrupted screening. Providing immediate catch-up screening could minimise the impact of the disruption, restricting the relative increase in colorectal cancer incidence and deaths between 2020 and 2050 to less than 0·1% in all countries. A post-disruption decrease in participation could increase colorectal cancer incidence by 0·2-0·9% and deaths by 0·6-1·6% between 2020 and 2050, compared with undisrupted screening. INTERPRETATION: Although the projected effect of short-term disruption to colorectal cancer screening is modest, such disruption will have a marked impact on colorectal cancer incidence and deaths between 2020 and 2050 attributable to missed screening. Thus, it is crucial that, if disrupted, screening programmes ensure participation rates return to previously observed rates and provide catch-up screening wherever possible, since this could mitigate the impact on colorectal cancer deaths. FUNDING: Cancer Council New South Wales, Health Canada, and Dutch National Institute for Public Health and Environment.


Subject(s)
COVID-19 , Colorectal Neoplasms/diagnosis , Early Detection of Cancer , Occult Blood , Aged , Australia/epidemiology , Canada/epidemiology , Colorectal Neoplasms/epidemiology , Humans , Incidence , Middle Aged , Netherlands/epidemiology
4.
J Med Screen ; 29(2): 72-83, 2022 06.
Article in English | MEDLINE | ID: covidwho-1556973

ABSTRACT

OBJECTIVES: Colorectal cancer (CRC) screening with a faecal immunochemical test (FIT) has been disrupted in many countries during the COVID-19 pandemic. Performing catch-up of missed screens while maintaining regular screening services requires additional colonoscopy capacity that may not be available. This study aimed to compare strategies that clear the screening backlog using limited colonoscopy resources. METHODS: A range of strategies were simulated using four country-specific CRC natural-history models: Adenoma and Serrated pathway to Colorectal CAncer (ASCCA) and MIcrosimulation SCreening ANalysis for CRC (MISCAN-Colon) (both in the Netherlands), Policy1-Bowel (Australia) and OncoSim (Canada). Strategies assumed a 3-month screening disruption with varying recovery period lengths (6, 12, and 24 months) and varying FIT thresholds for diagnostic colonoscopy. Increasing the FIT threshold reduces the number of referrals to diagnostic colonoscopy. Outcomes for each strategy were colonoscopy demand and excess CRC-related deaths due to the disruption. RESULTS: Performing catch-up using the regular FIT threshold in 6, 12 and 24 months could prevent most excess CRC-related deaths, but required 50%, 25% and 12.5% additional colonoscopy demand, respectively. Without exceeding usual colonoscopy demand, up to 60% of excess CRC-related deaths can be prevented by increasing the FIT threshold for 12 or 24 months. Large increases in FIT threshold could lead to additional deaths rather than preventing them. CONCLUSIONS: Clearing the screening backlog in 24 months could avert most excess CRC-related deaths due to a 3-month disruption but would require a small increase in colonoscopy demand. Increasing the FIT threshold slightly over 24 months could ease the pressure on colonoscopy resources.


Subject(s)
COVID-19 , Colorectal Neoplasms , Colonoscopy , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Early Detection of Cancer , Feces , Humans , Mass Screening , Occult Blood , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL